
FO Model Checking on Nested Pushdown Trees

Alexander Kartzow

TU Darmstadt, Fachbereich Mathematik, Schlossgartenstr. 7, 64289 Darmstadt

Abstract. Nested Pushdown Trees are unfoldings of pushdown graphs
with an additional jump-relation. These graphs are closely related to col-
lapsible pushdown graphs. They enjoy decidable µ-calculus model check-
ing while monadic second-order logic is undecidable on this class. We
show that nested pushdown trees are tree-automatic structures, whence
first-ordermodel checking is decidable. Furthermore, we prove that it is in
2-EXPSPACE using pumping arguments on runs of pushdown systems.
For these argumentswe also develop aGaifman style argument for graphs
of small diameter.

1 Introduction

Nested pushdown trees were introduced in [1] as an expansion of trees gen-
erated by pushdown systems with nested jump-edges. They were proposed
for software verification as jump-edges may be used to reason about matching
pairs of calls and returns in a program. Another approach to software verifica-
tion checks pushdown trees (without jump-edges) against specifications given
by automata or µ-calculus formulas. But these methods even lack the ability to
express that every call has a matching return. Alur et al. showed that nested
pushdown trees are tame structures with respect to the µ-calculus, in the sense
that µ-calculus model checking on nested pushdown trees is decidable. On the
other hand they proved the undecidability of monadic second-order logic on
nested pushdown trees. These results make nested pushdown trees an interest-
ing class from a model theoretic point of view because there are few natural
classes that separate µ-calculus and monadic second-order logic with respect to
model checking. In fact, the author knows of only one similar result, namely, for
the class of collapsible pushdown graphs [7]. The hierarchy of collapsible push-
down graphs forms an extension of the hierarchy of higher-order pushdown
graphs by using a new operation called collapse. There is a close relation be-
tween nested pushdown trees and collapsible pushdown graphs: the former are
first-order interpretable in collapsible pushdown graphs of order two. 1 In this
sense, jump-edges form a very weak form of collapse-edges. For both classes
nothing is known so far about the decidability of first-order model checking. In

1 As the proof of this claim is unpublished, we give an idea: A node in a nested push-
down tree is a run, i.e., a list of pairs of states and stacks. Push the state onto the stack.
This list of stacks can be seen as a level 2 stack and every edge in the nested tree can
then be simulated by up to four operations of the collapsible pushdown system.

the followingwe are going to settle the problem for nested pushdown treeswith
the positive answer that first-order model checking for nested pushdown trees
is in 2-EXPSPACE. Furthermore, we show that nested pushdown trees are tree-
automatic. The notion of tree-automatic structures was developed in [2] and
generalises the concept of automatic structures to the tree case. These are (usu-
ally) infinite structures that allow a finite representation by tree-automata. Due
to the good algorithmic behaviour of tree-automata the class of tree-automatic
structures has nice properties, e.g., first-order model checking is decidable. But
in general even automatic structures, and hence also tree-automatic structures,
have non-elementary lower bounds for FO model checking [4]. Nevertheless
we can show that model checking on nested pushdown trees is elementary by
using pumping techniques for pushdown systems.
Here is an outline of the paper. In Section 2 we present an Ehrenfeucht-

Fraı̈ssé-game argument for the equivalence of certain structures with parame-
ters for first-order logic up to a fixed quantifier rank. This argument is a form
of locality argument on structures of small diameter, despite the fact that small
diameters normally prohibit the use of locality arguments. We use local isomor-
phisms on subgraphs which are nicely embedded into the full graph. Later, this
is a main tool in our pumping arguments. Section 3.1 provides the definition
of nested pushdown trees and Section 3.2 contains the proof that these struc-
tures are tree-automatic. In order to show that first-order model checking on
nested pushdown trees is in 2-EXPSPACE (Section 3.4), we develop pumping
arguments on nested pushdown trees in 3.3.

2 A Gaifman Style Lemma on Graphs of Small Diameter

In this sectionwepresent agameargument showing that certain tuples of a given
graphhave the same≃ρ-type,where≃ρ is equivalence forfirst-order formulasup
to quantifier rank ρ. This argument forms the back-bone of the transformations
we are going to use on tuples in a nested pushdown tree. It is a kind of Gaifman-
locality argument for certain graphs with possibly small diameter. The crucial
property of these graphs is that there are some generic edges that make the
diameter small in the sense that a lot of vertices are connected to the same vertex,
butwhen these edges are removed thediameter becomes large. Therefore, on the
graph with these generic edges removed we can apply Gaifman-like arguments
in order to establish partial isomorphisms and ≃ρ-equivalence. As disjoint but
isomorphic neighbourhoods in such a graph have generic edges to the same
vertices (in the full graph) moving a tuple from one neighbourhood to the other
does not change the ≃ρ-type of the tuple.
We use the following definitions and notation. By FO we denote first-order

logic and we write FOρ for the restriction of FO to formulas of quantifier rank
up to ρ. We write ā = a1, a2 . . . , an ∈ A for a tuple of elements from a set A. For
structuresA andBwith n parameters ā ∈ An and b̄ ∈ Bn wewriteA, ā ≃ρ B, b̄ for
the fact that A, |= ϕ(ā) if and only ifB |= ϕ(b̄) for all ϕ ∈ FOρ. For some structure
G = (V,E1,E2, . . . ,En) with binary relations E1,E2, . . . ,En and sets A,B ⊆ V we

say that A and B touch if A ∩ B , ∅ or there are a ∈ A, b ∈ B such that (a, b) ∈ Ei
or (b, a) ∈ Ei for some i ≤ n. For a tuple ā ∈ A we define inductively the
l-neighbourhood of ā with respect to A setting A0(ā) := {ai ∈ ā}, and

Al+1(ā) := Al(ā) ∪ {b ∈ A : there are i ≤ n and c ∈ Al(ā) s.t. (b, c) ∈ Ei or (c, b) ∈ Ei} .

We write Nl(ā) for the l-neighbourhood with respect to the whole universe V.
We say that A and B are isomorphic over C ⊆ V and write A ≃C B if there is

some isomorphism ϕ : G↾A ≃ G↾B such that for all a ∈ A and c ∈ C

(a, c) ∈ Ei iff (ϕ(a), c) ∈ Ei and (c, a) ∈ Ei iff (c, ϕ(a)) ∈ Ei .

Lemma 1. Let G = (V,E1,E2, . . . ,En) be some structure, A,B ⊆ V not touching
and let ϕ : A ≃ B be an isomorphism of the induced subgraphs. Let ā ∈ A and

c̄ ∈ C := G \
(

A2ρ (ā) ∪ B2ρ (ϕ(ā))
)

.

ϕ↾A2ρ−1(ā) : A2ρ−1(ā) ≃C B2ρ−1(ϕ(ā)) implies G, ā, ϕ(ā), c̄ ≃ρ G, ϕ(ā), ā, c̄ .

Proof. We prove the claim by induction on ρ using Ehrenfeucht-Fraı̈ssé-Game-
terminology. By symmetry, we may assume that Spoiler extends the left-hand
side, i.e., extending ā, ϕ(ā), c̄ by some d ∈ V. The general idea is that Spoiler either
chooses an element inA∪B that is close to ā orϕ(ā) andDuplicator respondswith
applying the isomorphism ϕ. Otherwise, Duplicator just responds choosing the
same element as Spoiler.
Local case: if d ∈ A2ρ−1 (ā) set a

′ := d and if d ∈ ϕ(A2ρ−1 (ā)) set a
′ := ϕ−1(d). Then we

set ā′ := ā, a′.
As A2ρ−1 (ā

′) ⊆ A2ρ (ā), we have c̄ ∈ C
′ := G \

(

A2ρ−1 (ā
′) ∪ ϕ(A2ρ−1 (ā

′))
)

. Since A

and B do not touch and C′ = C∪D for D ⊆
(

A \ A2ρ−1 (ā
′)) ∪ (B \ B2ρ−1 (ϕ(ā

′))
)

we

get A2ρ−1−1(ā
′) ≃C′ ϕ(A2ρ−1−1(ā

′)). Hence, we obtain by induction hypothesis

G, ā′, ϕ(ā′), c̄ ≃ρ−1 G, ϕ(ā
′), ā′, c̄

Nonlocal case: otherwise, d ∈ C′ := G\
(

A2ρ−1 (ā)∪ϕ(A2ρ−1(ā))
)

andwe set c̄′ := c̄ρ, d.

Note thatA2ρ−1−1(ā) ≃C′ ϕ(A2ρ−1−1(ā)) asA andB are not touching and the distance
of elements in A2ρ−1−1(ā) and elements in C

′ ∩A is at least 2. Hence, by induction
hypothesis

G, ā, ϕ(ā), c̄′ ≃ρ−1 G, ϕ(ā), ā, c̄
′ . ⊓⊔

3 Nested Pushdown Trees

Nested pushdown trees are generated by pushdown systems in the following
way. We unfold the configuration graph of a pushdown system and we add a
jump relation that connects every push- with the corresponding pop-operations.
After formally introducing nested pushdown trees, we show that this class

of structures is tree-automatic. This already implies that FO model checking for

nested pushdown trees is decidable. But it does not yield an elementary bound
for the complexity since the model checking for tree-automatic structures is in
general non-elementary [4].
We give a separate argument that yields an elementary bound. This argu-

ment is basedonpumping techniques. In Section 3.3wepresent these techniques
which shorten long runs but preserve their≃ρ-type in the nested pushdown tree.
Due to this result, we only have to inspect finitely many short runs in order to
find witnesses for existential quantifications. Section 3.4 shows that this search
may be done in 2-EXPSPACE.

3.1 Definition

Definition 1 (Pushdown System). A tuple P = (Q, Σ, ∆, (q0,⊥)) with a finite set
of states Q, a finite set of stack symbols Σ, an initial configuration (q0,⊥) ∈ Q × Σ

and a transition relation ∆ ⊆ Q × Σ ×Q ×
{

pop, id,pushσ for each σ ∈ Σ
}

is called a

pushdown system.

Definition 2. A run r of P is a function r : {0, 1, 2, . . . ,n} → Q × Σ∗ such that for
all i < n there is some (q, σ, p, op) ∈ ∆ and some wi ∈ Σ

∗ such that r(i) = (q,wiσ) and
r(i+ 1) = (p, op(wiσ)), where pop(wiσ) = wi, id(wiσ) = wiσ, and pushτ(wiσ) = wiστ.
We call r a run from r(0) to r(n). We say that the length of r is length(r) := n.
For runs r and r′ of length n and m, respectively, such that r(n) = r′(0) we call

s : {0, 1, . . . ,n +m} → Q × Σ∗ s(i) :=















r(i) if i ≤ n

r′(i − n) otherwise

the composition of r and r′. We also say that s decomposes into r and r′.

Note that a run does not necessarily start in the initial configuration (q0,⊥) of
the pushdown system P. The next definition summarises some useful notation
about runs.

Definition 3. Let r be a run of a pushdown system P = (Q, Σ, ∆, (q0,⊥)) and let w, v
be words over Σ.

– If r has length n, then last(r) := r(n).
– By w ≤ v we mean that w is a prefix of v.
– For r(i) = (q, v), we set Stck(r(i)) := v. We write |r(i)| for |v| and w ≤ r(i) if w ≤ v.
– We say that r is w-prefixed if w ≤ r(i) for all i ∈ dom(r).
– We setmax(r) := max{|r(i)| : i ∈ dom(r)}.

Remark 1 (Prefix Replacement). Let r be a w-prefixed run of some pushdown
system P for some word w ∈ Σ∗. If w′ ∈ Σ∗ ends with the same letter as w then
the function

r[w/w′] : dom(r)→ Q × Σ∗

r[w/w′](i) := (qi,w
′wi) if r(i) = (qi,wwi)

is a run of P, where wwi denotes the usual concatenation of the words w and wi.

Definition 4 (Nested PushdownTree (NPT)). Let P = (Q, Σ, ∆, (q0,⊥)) be a push-
down system.Then thenestedpushdown treegenerated byP isNPT(P) := (R,→, ֒→)
where (R,→) is the unfolding of the configuration graph of P, i.e., R is the set of all runs
of P starting at the configuration q0,⊥. For two runs r1, r2 ∈ R, we have r1 → r2 if r2
extends r1 by exactly one configuration. The binary relation ֒→ is called jump relation
and is defined as follows: let r1, r2 ∈ R and last(r1) = (q,w) ∈ Q×Σ

∗. Then r1 ֒→ r2 if r1
is an initial segment of r2, last(r2) = (q

′,w) for some q′ ∈ Qandw is a proper prefix of all
stacks between last(r1) and last(r2), i.e., w < r2(i) for all length(r1) < i < length(r2).

3.2 NPT are tree-automatic

We start with the notion of a tree-automatic structure which was introduced in
[2]. A tree is a finite, prefix closed subset of {0, 1}∗, where ε represents the root
and we assume the successors at each vertex to be ordered. For a finite set Σ,
a Σ-labelled tree is a map c : T → Σ for some tree T. The convolution of two
Σ-labelled trees c1 and c2 is defined as c1 ⊗ c2 : dom(t1) ∪ dom(t2)→ (Σ ∪ {¤})

2,
where ¤ represents undefined elements, and

(c1 ⊗ c2)(t) =























(c1(t), c2(t)) if t ∈ dom(c1) ∩ dom(c2) ,

(c1(t),¤) if t ∈ dom(c1) \ dom(c2) ,

(¤, c2(t)) if t ∈ dom(c2) \ dom(c1) .

A tree-automaton is a tuple A = (Q, Σ, ∆,F) whereQ is a finite set of states, Σ ⊆ Q
a finite set of labels, ∆ ⊆ Q2 × Σ × Q the transition relation, and F ⊆ Q the set
of final states. A run of A on a Σ-labelled tree c : T → Σ is a function r : T → Q
such that for each leaf l ∈ T we have r(l) = c(l) and for inner nodes n ∈ T we
have r(n) = q if there is some (q0, q1, σ, q) ∈ ∆ such that r(ni) = qi for i ∈ {0, 1} and
c(n) = σ. A run r is accepting if r(0) ∈ F. Note that we require Σ ⊆ Q as A has no
special initial state but starts at every leaf of the tree initialised with the label of
this leaf.
A structure B = (B,E1,E2, . . . ,En) with binary relations Ei is tree-automatic if

there are automata AB,AE1 ,AE2 , . . . ,AEn such that

1. AB accepts a set C of Σ-labelled trees.
2. There is a bijection f : C→ B
3. for c1, c2 ∈ C, the automatonAEi accepts c1⊗c2 if and only if (f (c1), f (c2)) ∈ Ei.

Theorem 1. Nested pushdown trees are tree-automatic.2

By the decidability of the FO model checking for arbitrary tree-automatic
structures [2] we obtain that FO model checking on nested pushdown trees is
decidable.
For the proof of the theorem, we use the fact that, for every context-free

grammar G, there is a tree-automaton A which accepts exactly the derivation
trees of G. In order to prove tree-automaticity of a NPT, it therefore suffices to

2 I thank Dietrich Kuske for proposing a useful coding of runs in trees.

give a context free grammar of runs of a pushdown system P (starting at the ini-
tial configuration) and to provide grammars generating all pairs of derivations
of runs that are connected by→ or ֒→, respectively.

Let P = (Q, Σ, ∆, (q0,⊥)) be a pushdown system. The following context-free
grammar generates all runs of Pwhich start at the initial configuration q0,⊥. The
terminal symbols are the transitions of P, i.e., T := ∆. We use the non-terminal
symbols N := {X(q,σ) : q ∈ Q, σ ∈ Σ} ∪ {C

p

(q,σ)
: q, p ∈ Q, σ ∈ Σ}. The idea of

the coding is the following. A non-terminal X(q,σ) generates a subrun starting

from (q, σ) and a C
p

(q,σ)
generates a subrun starting at (q, σ), ending at (p, σ) and in

between this element σ is never removed from the stack.Note that such a subrun
may be extended by prefixing some pushσ- and postfixing some pop-operation
that deletes this symbol σ again. For q, p, r, s ∈ Q and σ, τ ∈ Σ, the productions
are

X(q,σ) →(q, σ, p, id)
∣

∣

∣ (q, σ, p, id)X(p,σ)
∣

∣

∣ (q, σ, p,pushτ)
∣

∣

∣ (q, σ, p,pushτ)X(p,τ)
∣

∣

∣ (q, σ, p,pushτ)C
r
(p,τ)(r, τ, s,pop)

∣

∣

∣ (q, σ, p,pushτ)C
r
(p,τ)(r, τ, s,pop)X(s,σ)

∣

∣

∣ (q, σ, p,pushτ)(p, τ, r,pop)
∣

∣

∣ (q, σ, p,pushτ)(p, τ, r,pop)X(r,σ)

and C
p

(q,σ)
→(q, σ, r, id)C

p

(r,σ)

∣

∣

∣ (q, σ, p, id)
∣

∣

∣ (q, σ, r,pushτ)C
s
(r,τ)(s, τ,u,pop)C

p

(u,σ)
∣

∣

∣ (q, σ, s,pushτ)(s, τ,u,pop)C
p

(u,σ)

∣

∣

∣ (q, σ, r,pushτ)C
s
(r,τ)(s, τ, p,pop)

∣

∣

∣ (q, σ, r,pushτ)(r, τ, p,pop)

Note that for every run r of P starting in (q0,⊥) there is a unique derivation tree
starting fromX(q0,⊥) and the leaves of this derivation tree – read from left to right
– are the transitions of r. Vice versa, every derivation tree codes a valid run.

As a next step we show that the set of convolutions of the derivation trees of
runs r1, r2 such that r2 extends r1 by exactly one transition may also be defined
via some context free grammar. Note that if a run r2 extends another run r1
by a pushσ- or id-transition, the derivation trees only differ in the subtree that
starts at the end of the unique longest path that is labelled by non-terminals
X(q,σ) (where q and σ may vary along the path). The coding of r2 contains an
isomorphic copy of this subtree in the coding of r1, and extends this subtree
by a new rightmost successor with label X(q,σ) for some q ∈ Q and σ ∈ Σ and
this new rightmost successor has a successor itself which is labelled by the last
transition of r2. The case of a pop-transition is a bit more involved as the subrun
between this pop-operation and the corresponding pushσ-operation is derived

from a C
p

(q,σ)
symbol in the derivation of r2, while it is derived from X(q,σ) in

the derivation of r1. But in fact, for both derivations, the form of this subtree
is the same and the terminal symbols coincide. The only difference is that the
non-terminals of the form X(r,τ) in the derivation of r1 are replaced by C

s
(r,τ)
for

some s ∈ Q in the derivation of r2.

We use the following notation. For some terminal or non-terminal awewrite
a2 as an abbreviation for the pair (a, a) andwewriteZ

p

(q,σ)
for the pair (X(q,σ),C

p

(q,σ)
).

The productions are

(X(q,σ))
2 →a21a

2
2 . . . a

2
n(X(p,τ))

2 for every X(q,σ) → a1a2 . . . anX(p,τ)

(C
p

(q,σ)
)2 →a21a

2
2 . . . a

2
n for every C

p

(q,σ)
→ a1a2 . . . an

(X(q,σ))
2 →(q, σ, p, id)2

(

¤,X(p,σ)
) ∣

∣

∣ (q, σ, p,pushτ)
2
(

¤,X(p,τ)
)

∣

∣

∣ (q, σ, p,pushτ)
2(Cr(p,τ))

2(r, τ, s,pop)2
(

¤,X(s,σ)
)

∣

∣

∣ (q, σ, p,pushτ)
2Zr(p,τ)

(

¤, (r, τ, s,pop)
) ∣

∣

∣ (q, σ, p,pushτ)
2
(

¤, (p, τ, s,pop)
)

Z
p

(q,σ)
→(q, σ, r, id)2Z

p

(r,σ)

∣

∣

∣ (q, σ, p, id)2
∣

∣

∣ (q, σ, r,pushτ)
2(Cs(r,τ))

2(s, τ,u,pop)2Z
p

(u,σ)
∣

∣

∣ (q, σ, s,pushτ)
2(s, τ,u,pop)2Z

p

(u,σ)

∣

∣

∣ (q, σ, r,pushτ)
2(Cs(r,τ))

2(s, τ, p,pop)2

∣

∣

∣ (q, σ, r,pushτ)
2(r, τ, p,pop)2

(¤,X(q,σ))→
(

¤, (q, σ, p, id)
) ∣

∣

∣

(

¤, (q, σ, p,pushτ)
)

Analogously to the→-case, we can give a grammar for runs r1, r2 such that
r1 ֒→ r2. If r1 ֒→ r2, then r1 is an initial segment of r2. Thus, the derivation of
r2 contains that of r1. It extends the derivation of r1 by a derivation of the form
(q, σ, p,pushτ)C

r
(p,τ)
(r, τ, s,pop). The following productions describe this:

(X(q,σ))
2 →a21a

2
2 . . . a

2
n(X(p,τ))

2 for every X(q,σ) → a1a2 . . . anX(p,τ)

(C
p

(q,σ)
)2 →a21a

2
2 . . . a

2
n for every C

p

(q,σ)
→ a1a2 . . . an

(X(q,σ))
2 →(q, σ, p, id)2

(

¤,X(p,σ)
) ∣

∣

∣ (q, σ, p,pushτ)
2
(

¤,X(p,τ)
)

∣

∣

∣ (q, σ, p,pushτ)
2(Cr(p,τ))

2(r, τ, s,pop)2
(

¤,X(s,σ)
)

(

¤,X(p,σ)
)

→
(

¤, (q, σ, p,pushτ)
)(

¤, (p, τ, r,pop)
)

∣

∣

∣

(

¤, (q, σ, p,pushτ)
)

(¤,Cs(r,τ))
(

¤, (p, τ, r,pop)
)

The productions of
(

¤,C
p

(q,σ)

)

are exactly as for C
p

(q,σ)
in the second component

with first component always marked ¤, i.e., the first run is already finished and
the second run extends the first one by some “closed” subrun, i.e., a subrun that
starts and ends with the same stack content.

3.3 ≃ρ-Pumping on NPT

In this section we present several pumping lemmas on runs of a pushdown
system P. The aim is to show that for every run of a pushdown system there is
another one of bounded length which represents a node with the same ≃ρ-type
in the NPT generated by P. We use these lemmas later to prove an elementary
bound for the complexity of FO model checking on nested pushdown trees. As
every ≃ρ-type has a witness of bounded length, a model checking algorithm
for an FOρ-formula only has to check runs of bounded length in order to find a
witness for an existential quantification.

We bound the length of a run in three steps. The first one reduces the size
of the last stack of a run, the second one reduces the size of the maximal stack
passed along the runand the last onegivesus basically a boundon thenumber of
occurrences of every given stack along the run.Wewill see that these conditions
are sufficient for bounding its length.
We start with a general observation about the structure of runs that are

related by some edge.Wewill use this lemma in several of our pumping lemmas.

Lemma 2. Let r = r1 ◦ r2 ◦ r3 be a run of a pushdown system P, w ∈ Σ
∗ and σ ∈ Σ

such that r2 is w-prefixed, r3 is (wσ)-prefixed and Stck(last(r1)) = w. If r ∗ s for
∗ ∈ {֒→,←֓,→,←} then s = r1 ◦ r

′
2 for some w-prefixed run r

′
2.

Proof. As wσ ≤ last(r) we have w ≤ last(s). Hence, the only non-trivial case is
s ֒→ r. By definition of ֒→, we have wσ ≤ r(i) for all i ∈ dom(r) \ dom(s) and s is
an initial segment of r. Thus, r1 is an initial segment of s. ⊓⊔

Now we can state our first pumping lemma, that reduces the size of the last
configuration of a given run, while preserving its ≃ρ-type.

Lemma 3 (First ≃ρ-Pumping Lemma). Let r̄ = r1, r2, . . . , rm ∈ NPT(P) and
r ∈ NPT(P) such that

|last(r)| > |last(ri)| + (2 + 2
ρ+1)|Q| · |Σ| + 2ρ + 1 for all i ≤ m .

There is an s ∈ NPT(P) such that |last(s)| < |last(r)| andNPT(P), r̄, r ≃ρ NPT(P), r̄, s.

Proof. Because of the length of v := Stck(last(r)) there are w1 < w2 ≤ v and
decompositions of r as r = rw1 ◦ sw1 = rw2 ◦ sw2 such that

1. swi(0) = (wi, q) for some q ∈ Q and all i ∈ {1, 2};
2. swi is wi-prefixed;
3. |w1| > |last(ri)| and |last(r)| > |w2| + 2

ρ;
4. w1 and w2 end with the same letter σ ∈ Σ;
5. |w2| − |w1| > 1 + 2

ρ+1.

Then s := rw1 ◦ sw2[w2/w1] is well defined by Remark 1. Note that N2ρ (r) and
N2ρ (s) do not touch because |last(r)| − |last(s)| = |w2| − |w1| > 1 + 2

ρ+1 and for
runs connected by a path of length 2 · 2ρ + 1 the height of their last stacks
does not differ by more than 2 · 2ρ + 1. Furthermore, due to 3., Lemma 2, and
Remark 1, it follows that for all r′ ∈ N2ρ (r) we have r

′ = rw2 ◦ r
′
w2 for some

w2-prefixed r
′
w2 and the function ϕ : r

′ 7→ rw1 ◦ r
′
w2 [w2/w1] is an embedding

of N2ρ (r) into N2ρ (s). For the same reasons, ϕ
−1 : rw1 ◦ r

′
w1 7→ rw2 ◦ r

′
w1[w1/w2]

for a w1-prefixed run r
′
w1 forms an embedding of N2ρ (s) into N2ρ (r). Finally, as

|last(r)| > |last(s)| ≥ |w1| > |last(ri)| + 2
ρ, again by Lemma 2, ri cannot be in the

2ρ-neighbourhood of r and s. Hence, we may apply Lemma 1. ⊓⊔

Now we are going to prove a second ≃ρ-type preserving pumping lemma
that preserves the last configuration of a run r, but reduces max(r).

. . . q′,w′ q,w . . .

q′,w′ q,w . . .

Fig. 1. Second pumping lemma: we replace the upper q,w by the lower one. The dotted
/ dashed boxes mark the neighbourhood of the upper / lower q,w

Lemma 4 (Second ≃ρ-Pumping Lemma). Let r̄ = r1, r2, . . . , rm ∈ NPT(P) and
r ∈ NPT(P) such that max(r) > max(ri) + |Q|

2|Σ| + 1 for all 1 ≤ i ≤ m, and such
that max(r) > |last(r)| + |Q|2|Σ| + 2ρ + 1. Then there is some s ∈ NPT(P) such that
last(s) = last(r),max(s) < max(r), and r̄, r ≃ρ r̄, s.

Proof. We eliminate the last occurrence of a stack of length max(r) in r. For
this purpose, let i ∈ dom(r) be maximal with Stck(r(i)) = w for w ∈ Σ∗ with
|w| > |Q2||Σ|+ 2ρ + 1+ |last(r)|. Then for all last(r) ≤ v ≤ w, the run r decomposes
as r = rv ◦ sv ◦ tv such that i ∈ dom(rv ◦ sv), sv is v-prefixed, sv(0) = (qv, v),
last(sv) = (pv, v) for some qv, pv ∈ Q, and |t(i)| < |v| for all 1 ≤ i ≤ length(t). Then
there are v1 < v2 ≤ wwith

1. max(ri) < |v1|
2. |v2| > |v1| > |last(r)| + 2

ρ

3. qv1 = qv2 , pv1 = pv2
4. the last letter of v1 and v2 is the same σ ∈ Σ.

Then we set s′v2 := sv2[v2/v1]. Note that s := rv1 ◦ s
′
v2 ◦ tv1 is a well defined run. We

use Lemma 1 to show that r̄, r ≃ρ r̄, s. We set

A := {t ∈ N2ρ (r) : t = rv1 ◦ sv1 ◦ t
′, t′ run} B := {t ∈ N2ρ (s) : t = rv1 ◦ s

′
v2 ◦ t

′, t′ run} .

Note that ri < A ∪ B as for all t ∈ A ∪ B, we have max(t) ≥ |v1| > max(ri).
From Lemma 2 it follows that for each run t′ such that rv1 ◦ sv1 ◦ t

′ ∈ N2ρ (r)
or rv1 ◦ s

′
v2 ◦ t

′ ∈ N2ρ (s) we have |t
′(i)| < |v1| for 1 ≤ i ≤ length(t

′). Hence, for
j := length(rv1 ◦ sv1) and every t ∈ A we have Stck(t(j)) = v1, while for all t ∈ B
we have |t(j)| < |v1| as length(sv1) > length(s

′
v2). Thus, for all a ∈ A and b ∈ B

the runs a and b disagree on a proper prefix of both elements, whence A and B
cannot touch.
Now we claim that there is an isomorphism of the induced subgraphs

ϕ : A2ρ (r) ≃ B2ρ (s), given by rv1 ◦ sv1 ◦ t
′ 7→ rv1 ◦ s

′
v2 ◦ t

′. For this note that for
any two runs t′, t′′ and for ∗ ∈ {→,←, ֒→,←֓} we have

(rv1 ◦ sv1 ◦ t
′) ∗ (rv1 ◦ sv1 ◦ t

′′) iff t′ ∗ t′′ iff (rv1 ◦ s
′
v2 ◦ t

′) ∗ (rv1 ◦ s
′
v2 ◦ t

′′) .

In order to apply the game argument, we finally have to show that edges
between A2ρ−1(r) and NPT(P) \ A2ρ (r) are preserved under ϕ. Assume that

a ∈ A2ρ−1(r) and c ∈ NPT(P) \
(

A2ρ (r) ∪ B2ρ (s)
)

. Note that a → c or a ֒→ c im-

plies that a is a subrun of c and thus c ∈ A2ρ (r) by definition of A. Assume that
c → a. then |last(c)| ≤ |last(r) + 2ρ| < |v1|. Hence c , rv1 ◦ sv1 . But as rv1 ◦ sv1 is a

. . . q1,w q2,w . . . q2,w q3,w . . . q,w′ . . .

q3,w . . . q,w′ . . .

Fig. 2. Third pumping lemma: we replace the upper q,w′ by the lower one. The dotted /
dashed boxes mark the neighbourhood of the upper / lower q,w′

proper initial segment of a, this results in c ∈ A2ρ (r). Thus, if c ∈ NPT(P) \ A2ρ (r)
is connected to a then c ֒→ a and c is an initial segment of rv1 ◦ sv1 . But as the last
stack of a and c agree and |last(a)| < |v1| then c is an initial segment of rv1 . Thus,
c ֒→ ϕ(a) as sv1 and s

′
v2 are both v1-prefixed and last(a) = last(ϕ(a)) < v1.

Now we found an ≃ρ-equivalent run s that is shorter than r. Iterating this
process leads eventually to some run swith the desired properties ⊓⊔

Now we state our last pumping lemma, which decreases the number of
occurrences of a given stack in a run r without affecting its ≃ρ-type. In order to
do this we have to define what it means for a given stack w to occur often in
a run r. We are going to count the occurrences of w as a stack in a w-prefixed
subrun of r. Afterwards, we will see that bounding this number and max(r) is a
sufficient condition to bound the total number of occurrences of a stack w in r.

Definition 5. Let r be a run of the pushdown system P = (Q, Σ, ∆, (q0,⊥)) of length

n. The number of occurrences of w in r is denoted |r|w :=
∣

∣

∣{i ∈N : Stck(r(i)) = w}
∣

∣

∣. We

set Ξ(r) := max
{

|s|w : w ∈ Σ
∗ and s is a w-prefixed subrun of r

}

.

Lemma 5 (Third ≃ρ-Pumping Lemma). Let r̄ ∈ NPT(P) such that Ξ(ri) ≤ B for
all ri ∈ r̄ and some B ∈ N. For r ∈ NPT(P), there is some s ∈ NPT(P) such that
max(s) ≤ max(r), last(s) = last(r), Ξ(s) ≤ B + (2ρ+1 + 2)|Q| + 2ρ + 1, and r̄, r ≃ρ r̄, s.

Figure 2 gives an idea of the proof which is similar to that of the Lemma 4.

3.4 FO model checking on NPT is in 2-EXPSPACE

Using the three pumping lemmas we can now establish a “dynamic small
witness property” forNPT: given the length of the runs representing parameters
in a formula of quantifier rankρ,we canbound the length of the run representing
a witness for the first existential quantification occurring in the formula, if there
is some witness for this quantification at all. The crucial point is that a bound
on max(r) and a bound on Ξ(r) yield a bound on the length of r:

Lemma 6. Let P = (Q, Σ, ∆, (q0,⊥)) be a pushdown system and r a run of P such that

max(r) = h and Ξ(r) = b, then length(r) ≤ b
h+2−b
b−1 .

Proof. Let mh := b. For every w ∈ Σ
h and some w-prefixed subrun s of rwe have

length(s) ≤ mh as the height of all stacks in s is h, whence all elements in s have
stack w.

Now assume that every subrun t of rwhich is w-prefixed for some w ∈ Σn+1

has length(t) ≤ mn+1. Let w ∈ Σ
n be an arbitrary word and let s be a maximal w-

prefixed subrun of r. Then there are 0 = e1 < e2 < . . . < e f < e f+1 = length(s) + 1
such that for 0 ≤ i ≤ f we have Stck(s(ei)) = w and s restricted to (ei, ei+1) is
wi-prefixed for some wi ∈ Σ

n+1. We have f ≤ b due to Ξ(s) ≤ Ξ(r) ≤ b. By
assumption we get length(s) ≤ (1 +mn+1)b. Note that r is ε-prefixed, hence

length(r) ≤ m0 = b + bm1 = b + b
2 + b2m2 = . . . = mh

h
∑

i=0

bi =
bh+2 − b

b − 1
. ⊓⊔

In the following we define our notion of a small run. Let P = (Q, Σ, ∆, (q0,⊥))
be a pushdown system. For j ≤ k ∈Nwe say that some r ∈ NPT(P) is (j, k)-small
if

|last(r)| ≤ 6|P|2 j2k, max(r) ≤ 8|P|3 j2k, and Ξ(r) ≤ 6|P| j2k .

Lemma 7. LetP = (Q, Σ, ∆, (q0,⊥)) be a pushdown system, r̄ = r1, r2, . . . , ri ∈ NPT(P)
and i ≤ k ∈ N. Then there are r̄′ = r′

1
, r′2, . . . , r

′
i
∈ NPT(P) such that every r′

j
is (j, k)-

small and r̄ ≃k−i r̄
′.

The proof is by induction on i using the pumping lemmas.
With the bounds on the length of runs we can do FO model checking by

brute force inspection of short runs. In order to check for an existential witness
we only have to test all runs of bounded length. The bound depends on the
number of parameters chosen before and on the size of the formula which we
check. Thismeans for a fixed quantifier in some formulaϕweonly have to check
a finite initial part of the nested pushdown tree under consideration. Thus, we
can give an alternating algorithm for FO model checking on NPT that works
similar to the FO model checking algorithm on finite structures explained in [6].

Theorem 2. The structure complexity ofFOmodel checking onNPT is inEXPSPACE,
while its expression and combined complexity are in 2-EXPSPACE.

Proof. We assume that the i-th quantifier with respect to quantifier depth binds
xi. The algorithm ModelCheck (see next page), decides NPT(P) |= ϕ. Due to
Lemma 7, a straightforward induction shows that ModelCheck is correct. We
analyse the space that this algorithm uses. Due to Lemma 6 an (i, k)-small run
r has bounded length and we can store it as a list of exp(O(i|P|4k exp(k))) many
transitions. Thus, we need exp(O(i|P|4k exp(k))) log(P) space for storing one run.
Additionally, we need space for checking whether such a list of transitions
forms a valid run and for checking the atomic type of the runs. We can do this
by simulation of P. The size of the stack is bounded by the size of the runs. Thus,
the alternating algorithm ModelCheck is in

ASPACE
(

|ϕ| log(|P|) exp(O(|P|4|ϕ|2 exp(|ϕ|)))
)

⊆ ASPACE
(

exp(O(|P|4 exp(2|ϕ|)))
)

.

As the number of alternations is bounded by |ϕ|, we see by [5](Theorem 4.2)

that FO model checking for NPT is in DSPACE
(

exp(O(|P|4 exp(2|ϕ|)))
)

.

Algorithm: ModelCheck(P, α, ϕ)

Input: pushdown system P, ϕ ∈ FOρ, an assignment α : free(ϕ)→ NPT(P) such
that n = |dom(α)| and α(x j) is (j, ρ + n)-small for each j ≤ n

if ϕ is an atom or negated atom then
if NPT(P) |= ϕ[α] then accept else reject;

if ϕ = ϕ1 ∨ ϕ2 then guess i ∈ {1, 2}, and ModelCheck(P, α, ϕi);
if ϕ = ϕ1 ∧ ϕ2 then universally choose i ∈ {1, 2}, and ModelCheck(P, α, ϕi);
if ϕ = ∃xiϕ1 then
guess an (i, k + n)-small a of NPT(P) and ModelCheck(P, α[xi 7→ a], ϕ1);

if ϕ = ∀xiϕ1 then
universally choose an (i, k + n)-small a of NPT(P) and
ModelCheck(P, α[xi 7→ a], ϕ1);

Algorithm 1: ModelCheck used in the proof of Theorem 2.

4 Conclusions

By tree-automaticity as well as pumping techniques we showed decidability
of the FO model checking on NPT. Both approaches are transferable to some
extent to the case of collapsible pushdown graphs. The tree-automaticity ar-
gument applies at least to level 2 of the hierarchy of collapsible pushdown
automata. 3 But for arguments in the spirit of generation growth [4] combined
with a result about counting abilities of higher-order pushdown systems[3], one
obtains level 5 collapsible pushdown systems that are not tree-automatic. This
raises the question of a characterisation of all tree-automatic collapsible push-
down graphs, especially for levels 3 and 4. Another open problem is effective
FO model checking on collapsible pushdown graphs and whether pumping
techniques lead to effective model checking algorithms on these graphs.

References

1. Rajeev Alur, Swarat Chaudhuri, and P. Madhusudan. Languages of nested trees. In
In Proc. 18th International Conference on Computer-Aided Verification, LNCS 4144, pages
329–342. Springer, 2006.

2. Achim Blumensath. Automatic structures. diploma thesis, RWTH Aachen, 1999.
3. Achim Blumensath. On the structure of graphs in the caucal hierarchy. Theor. Comput.
Sci., 400(1-3):19–45, 2008.

4. Achim Blumensath and Erich Grädel. Automatic structures. In Proc. 15th IEEE Symp.
on Logic in Computer Science, pages 51–62. IEEE Computer Society Press, 2000.

5. Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981.

6. E. Grädel. Finite model theory and descriptive complexity. In Finite Model Theory and
Its Applications, pages 125–230. Springer-Verlag, 2007.

7. M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown
automata and recursion schemes. In LICS ’08: Proceedings of the 2008 23rd Annual
IEEE Symposium on Logic in Computer Science, pages 452–461, 2008.

3 We obtained this result recently and hope to publish it soon.

Appendix with Omitted Proofs

A.1 Proof of Lemma 5

We start with an auxiliary lemma. Given runs r and s which are close to each
other in some nested pushdown tree, the following lemma shows that the num-
ber of occurrences of a stack w in w-prefixed subruns of r and s have to be
similar.

Lemma 8. Let r = r1 ◦ s1 ◦ u1 be a run such that s1 is w-prefixed for some w ∈ Σ
∗

and either length(u1) = 0 or u1(1) < w. If r ֒→ s, then s = r1 ◦ s
′
1
◦ u′
1
where s′

1
is

w-prefixed and length(u′
1
) = 0 or u′

1
(1) < w and |s′

1
|w − |s1|w ∈ {0, 1}.

Proof. If u1(1) < w, then s = r1 ◦ s1 ◦ u1 ◦ u
′. Otherwise if length(u1) = 0, then

s = r1◦s1◦u
′ such that the last stacks of u′ and s1 agree, hencew ≤ last(u

′) < u′(i)
for all 1 ≤ i < length(u′). Thus, |s1 ◦ u

′|w ≤ |s1|w + 1. ⊓⊔

Note that the lemma also applies to runs r, s with r → s as in this case
|dom(s) \dom(r)| = 1, whence the number of occurrences of w can differ at most
by one. Using this, we can prove our last pumping lemma, which bounds Ξ(r).
The proof relies on the fact that we find subruns r1, r2 with last(r1) = last(r2) and
|r1|w much smaller than |r2|w for some word w.

Proof (of third ≃ρ-pumping lemma). Assume Ξ(r) is to big because w ∈ Σ
∗ occurs

to often. We decompose r as r = r1 ◦ s1 ◦ t1 ◦ u1 such that s1 starts and ends at
the same configuration, i.e., s1(0) = last(s1) = (q,w) for a word w ∈ Σ

∗ and a
q ∈ Q. Furthermore, we choose the decomposition such that s1 ◦ t1 is maximal
w-prefixed, |s1|w ≥ 2

ρ+1 + 2, and |s1t1|w = |s1|w + 2
ρ. Set s := r1 ◦ t1 ◦ u1. We claim

that r ≃ρ s. The proof uses Lemma 1. Let

A :={t ∈ NPT(P) : t = r1 ◦ s1 ◦ t, t w-prefixed, |t|w ∈ [0, 2
ρ+1]}

∪ {t ∈ NPT(P) : t = r1 ◦ s1 ◦ t ◦ u, t w-prefixed, |t|w ∈ [0, 2
ρ+1],u(1) < w}

B :={t ∈ NPT(P) : t = r1 ◦ t, t w-prefixed, |t|w ∈ [0, 2
ρ+1]}

∪ {t ∈ NPT(P) : t = r1 ◦ t ◦ u, t w-prefixed, |t|w ∈ [0, 2
ρ+1],u(1) < w} .

First note that r̄ ∈ NPT(P) \ (A∪ B) due to Ξ(ri)+ 2
ρ < Ξ(s) < Ξ(r). Furthermore,

A and B do not touch: for a ∈ A, b ∈ B assume b = r1 ◦ t
′ ◦ u′. Then the greatest

common initial segment of a and b is an initial segment of r1 ◦ twhich is a proper
initial segment of a and b. Thus there cannot be any edge between a and b.
Otherwise b = r1 ◦ t

′ and last(b) ≤ wwith |t|w ≤ 2
ρ+1. Then a = r1 ◦ t

′ ◦ ta for some
w-prefixed ta and by Lemma 8 |t

′ ◦ ta|w ≤ 2
ρ+1+1. On the other hand a = r1 ◦s1 ◦ t

′

with |s1 ◦ t
′|w ≥ |s1|w ≥ 2

ρ+1 + 2. Thus, by contradiction A and B do not touch.
Themapϕ : A→ B, r1◦s1◦t 7→ r1◦t is an isomorphism.For ∗ ∈ {→,←, ֒→,←֓},

(r1 ◦ s1 ◦ t) ∗ (r1 ◦ s1 ◦ t
′)

iff t ∗ t′

iff (r1 ◦ t) ∗ (r1 ◦ t
′) .

In order to apply Lemma 1, we have to show the preservation of edges between
A2ρ−1(r) and NPT(P) \ A2ρ (r). For this note that from Lemma 8 it follows that
a ∈ Ak(r) implies a = r1 ◦ s1 ◦ t ◦ u or a = r1 ◦ s1 ◦ t for some w-prefixed t and
|t|w ∈ [2

ρ − k, 2ρ + k] and u(1) < w. Thus, for a ∈ A2ρ−1(r), c ∈ NPT(P) \A2ρ (r) with
a ∗ c for ∗ ∈ {→,←, ֒→,←֓}Lemma8 implies that c ֒→ a = r1◦s1◦t◦u, c is an initial
segment of r1, and last(a) < w. But this is only the case if c ֒→ ϕ(a) = r1◦ t◦u as s1
is w-prefixed and last(a) < w. Hence, the game argument shows that r̄, r ≃ρ r̄, s.
Iteration of this process proves the lemma. ⊓⊔

A.2 Proof of Lemma 7

Proof. We prove the claim by induction on i. For i = 0 the claim is triv-
ially true. Assume the claim is true for some i ∈ N and some k ≥ i + 1.
Let r̄ = r1, r2, . . . , ri+1 ∈ NPT(P), then there are r

′
1
, r′2, . . . , r

′
i
∈ NPT(P) such

that r1, r2, . . . , ri ≃k−i r
′
1
, r′2, . . . , r

′
i
and r′

j
is (j, k)-small for all 1 ≤ j ≤ i. Be-

cause of the ≃k−i-equivalence there is some element a ∈ NPT(P) such that
r1, r2, . . . , ri, ri+1 ≃k− j−1 r

′
1
, r′2, . . . , r

′
i
, a. The first ≃n-pumping lemma shows that

we can choose this a in such a way that

|last(a)| ≤ 6|P|2i2k + |Q||Σ|(2 + 2(k−(i+1))+1) + 2(k−(i+1)) + 1 ≤ 6|P|2(i + 1)2k .

Due to the second ≃n-pumping lemma, there is some b ∈ NPT(P) such that

r′1, r
′
2, . . . , r

′
i , a ≃k− j−1 r

′
1, r
′
2, . . . , r

′
i , b ,

last(b) = last(a) , and

max(b) ≤ 8|P|3i2k + |Q|2|Σ| + 1 ≤ 8|P|3(i + 1)2k .

Now we may apply the third ≃n-pumping lemma and find some c ∈ NPT(P)
such that

r′1, r
′
2, . . . , r

′
i , b ≃k− j−1 r

′
1, r
′
2, . . . , r

′
i , c ,

last(c) = last(b) ,

max(c) ≤ max(b) , and

Ξ(c) ≤ 6|P|i2k + (2k−(i+1)+1 + 2)|Q| + 2k−(i+1) + 1 ≤ 6|P|(i + 1)2k .

⊓⊔

